Home Diagnostica di laboratorio Proteina tumorale p53

Proteina tumorale p53

Da dottvolpicelli

La proteina p53, modulata dal gene TP53 collocato sul cromosoma 17 esattamente in 17p13.1, regola la crescita e la divisione cellulare e riveste un ruolo importante nell’arresto della proliferazione delle cellule anormali e quindi nello sviluppo di neoplasie. E’ detta anche Antigene tumorale cellulare p53, Soppressore tumorale p53, Fosfoproteina p53, Antigene NY-CO-13, Oncosoppressore p53. E’ stata identificata nel 1979 da 6 gruppi di ricercatori:  DeLeo et al. 1979, Kress et al. 1979, Lane & Crawford 1979, Linzer & Levine 1979, Melero et al. 1979, Smith et al. 1979. E’ composta da 393 aminoacidi e deve il suo nome alla sua massa molecolare: pesa infatti 53 kDa (1-10). 

Meccanismo d’azione: la proteina p53 interviene con diversi meccanismi:

  • attiva la riparazione del DNA danneggiato (se il DNA è riparabile), inducendo la trascrizione di geni riparatori del DNA come GADD45;
  • in seguito a danni del DNA p53 viene fosforilata da ATM e in tale forma può agire come fattore di trascrizione, migra nel nucleo, si lega a p21 inducendone la trascrizione e portando così al blocco del ciclo cellulare inibendo il complesso cdk4-cdk6/ciclina D;
  • in caso di danno irreparabile, può dare inizio all’apoptosi, inducendo la trascrizione di Noxa
  • se il DNA viene riparato, la proteina p53 viene degradata da MDM2 e quindi  c’è la ripresa del ciclo cellulare.

Può dunque indurre l’arresto della crescita cellulare, l’apoptosi e la senescenza cellulare (11-23).

La p53 partecipa all’apoptosi neuronale da malattie neurodegenerative come la sclerosi multipla, la corea di Huntington, la malattia di Alzheimer, la malattia di Parkinson e la sclerosi laterale amiotrofica. Dunque delle molecole che preverrebbero l’attivazione o l’attività di p53 in queste malattie neurologiche, potrebbero costituire dei farmaci di estremo beneficio per rallentare la loro progressione (23-38).

Mutazioni del gene PT53  sono state osservate in molti pazienti affetti da neoplasie. Tali mutazioni compromettono la funzionalità del gene e annullano le proprietà oncosoppressive della proteina p53.   I pazienti neoplastici che possiedono mutazioni a livello del gene PT53 hanno una prognosi sfavorevole della malattia rispetto ai pz. in cui il gene è normale. La caratterizzazione delle mutazioni del gene PT53, su cellule cancerose o normali, mediante il sequenziamento automatico a tecnologia fluorescente del DNA può essere quindi impiegata come marker per l’outcome terapeutico e come rivelatore di rischio neoplastico (39,40).

Cercare di ripristinare la funzionalità del gene sarebbe un ulteriore passo avanti per la cura di molte neoplasie e malattie degenerative (41).

MDM2 è una oncoproteina sovraespresso in vari tipi di neoplasie.  La sua funzione primaria è quella di inibire l’attività della proteina p53 nell’ottica di una condizione di equilibrio funzionale intesa a modulare l’azione della proteina p53 limitandone l’azione in caso di necessità. MDM2 favorisce la degradazione cellulare e l’apoptosi oppure la ripresa del ciclo mitotico a seconda delle situazioni (52-59). La sua secrezione è modulata dalla stessa proteina p53 (42-52).

References:

  1. Culmsee C et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem. 2001 Apr; 77(1):220-8.
  2. Bae BI et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron. 2005 Jul 7;47(1):29-41.
  3. Biswas SC et al. Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res. 2005 Jun-Jul;30(6-7):839-45.
  4. Pietrancosta N et al. Imino-tetrahydro-benzothiazole derivatives as p53 inhibitors: discovery of a highly potent in vivo inhibitor and its action mechanism. J Med Chem. 2006 Jun 15;49(12):3645-52.
  5. Plesnila N et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ. 2007 Aug;14(8):1529-41.
  6. Eve DJ, Dennis JS, Citron BA. Transcription factor p53 in degenerating spinal cords. Brain Res. 2007 May 30;1150:174-81.
  7. Cantelli-Forti,Tossicologia Molecolare,Utet,2009
  8. Baker, S. J., Fearon, E. R., et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science244, 217–221 (1989).
  9. de Rozieres, S., Maya, R., et al. The loss of mdm2 induces p53-mediated apoptosis. Oncogene19, 1691–1697 (2000).
  10. Eliyahu, D., Raz, A., et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature312, 646–649 (1984).
  11. Eliyahu, D., Michalovitz, D., et al. Overproduction of p53 antigen makes established cells highly tumorigenic. Nature316, 158–160 (1985).
  12. el-Deiry, W. S., Kern, S. E., et al. Definition of a consensus binding site for p53. Nature Genetics1, 45–49 (1992).
  13. Eliyahu, D., Michalovitz, D., et al. Wild-type p53 can inhibit oncogene-mediated focus formation. Proceedings of the National Academy of Science, USA86, 8763–8767 (1989).
  14. Donehower, L. A., Harvey, M., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992).
  15. el-Deiry, W. S., Tokino, T., et al. WAF1, a potential mediator of p53 tumor suppression. Cell75, 817–825 (1993).
  16. Farmer, G., Bargonetti, J., et al. Wild-type p53 activates transcription in vitro. Nature358, 83–86 (1992).
  17. Finlay, C. A., Hinds, P. W. et al. The p53 proto-oncogene can act as a suppressor of transformation. Cell57, 1083–1093 (1989).
  18. Honda, R., Tanaka, H., et al. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters420, 25–27 (1997).
  19. Haupt, Y., Maya, R., et al. Mdm2 promotes the rapid degradation of p53. Nature387, 296–299 (1997).
  20. Funk, W. D., Pak, D. T., et al. A transcriptionally active DNA-binding site for human p53 protein complexes. Molecular Cell Biology12, 2866–2871 (1992).
  21. Jenkins, J. R., Rudge, K. et al. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature312, 651–654 (1984).
  22. Kamijo, T., Weber, J. D., et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proceedings of the National Academy of Science, USA95, 8292–8297 (1998).
  23. Kern, S. E., Kinzler, K. W., et al. Identification of p53 as a sequence-specific DNA-binding protein. Science252, 1708–1711 (1991).
  24. Kress, M., May, E., et al. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. Journal of Virology31, 472–483 (1979).
  25. Lowe, S. W., Schmitt, E. M., et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature362, 847–849 (1993).
  26. Malkin, D., Li, F. P., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science250, 1233–1238 (1990).
  27. Melero, J. A., Stitt, D. T., et al. Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and -transformed cells. Virology93, 466–480 (1979).
  28. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell7, 683–694 (2001).
  29. Nigro, J. M., Baker, S.J., et al. Mutations in the p53 gene occur in diverse human tumour types. Nature342, 705–708 (1989).
  30. Oda, E., Ohki, R., et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science288, 1053–1058 (2000).
  31. Parada, L. F., Land, H., et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature312, 649–651 (1984).
  32. Shaw, P., Bovey, R., et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proceedings of the National Academy of Science, USA89, 4495–4499 (1992).
  33. Shvarts, A., Steegenga, W. T., et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. The EMBO Journal15, 5349–5357 (1996).
  34. Srivastava, S., Zou, Z. Q., et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature348, 747–749 (1990).
  35. Yonish-Rouach, E., Resnitzky, D., et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature352, 345–347 (1991).
  36. Banin, S., Moyal, L., et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science281, 1674–1677 (1998).
  37. Canman, C. E., Lim, D. S., et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science281, 1677–1679 (1998).
  38. Bargonetti, J., Friedman, P. N., et al. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell65, 1083–1091 (1991).
  39. Cahilly-Snyder L, Yang-Feng T, Francke U. et al. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Molec Genet. 1987;13:235–244. [PubMed: 3474784]
  40. Plesnila N et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ. 2007 Aug;14(8):1529-41.
  41. Esposito E, Cuzzocrea S. New Therapeutic Strategy for Parkinson’s and Alzheimer’s Disease. Curr Med Chem. 2010 Jun 29. [Epub ahead of print].
  42. Oliner JD, Pietenpol JA, Thiagalingam S. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–860. [PubMed: 8479525]
  43. Momand J, Wu H, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene. 2000;242:15–29. [PubMed: 10721693]
  44. Deb SP. Function and dysfunction of the human oncoprotein MDM2. Front Biosci. 2002;7:235–243. [PubMed: 11779693]
  45. Jones SN, Roe AE, Donehower LA. et al. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–208. [PubMed: 7477327]
  46. Momand J, Zambetti GP, Olson DC. et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–1245. [PubMed: 1535557]
  47. Wade M, Wong ET, Tang M, Stommel JM, Wahl GM (November 2006). “Hdmx modulates the outcome of p53 activation in human tumor cells”. The Journal of Biological Chemistry. 281 (44): 33036–44. doi:10.1074/jbc.M605405200. PMID 16905769.
  48. Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M (January 2016). “MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53”. Molecular Cell. 61 (1): 68–83. doi:10.1016/j.molcel.2015.12.008. PMID 26748827.
  49. Ebrahim M, Mulay SR, Anders HJ, Thomasova D (November 2015). “MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration”. Histology and Histopathology. 30 (11): 1271–82. doi:10.14670/HH-11-636. PMID 26062755.
  50. Landers JE, Cassel SL, George DL. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 1997;57:3562–3568. [PubMed: 9270029]
  51. Momand, J., Zambetti, G. P., et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell69, 1237–1245 (1992).
  52. Kubbutat, M. H., Jones, S. N., et al. Regulation of p53 stability by Mdm2. Nature387, 299–303 (1997).

Potrebbe piacerti anche

Lascia il tuo commento

Inserisci la somma corretta Limite di tempo superato. Si prega di completare nuovamente il captcha.

Il Fertilitycenter.it è un sito informativo al fianco delle coppie per sostenerle ed informarle nel desiderio più grande, quello di avere un figlio.

ULTIMI ARTICOLI

fertilitycenter.it © 2023 All right reserved.

Questo sito Web utilizza i cookie per migliorare la tua esperienza. Supponiamo che tu sia d'accordo con questo, ma puoi annullare l'iscrizione se lo desideri. Accetto Leggi

-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00